SPECIFIC_NUCLEAR TRIIODOTHYRONINE BINDING SITES IN RAT LIVER AND KIDNEY

J.H. OPPENHEIMER, D. KOERNER, H.L. SCHWARTZ, AND M.I. SURKS Endocrine Research Laboratory, Department of Medicine, Montefiore Hospital and Medical Center and the Albert Einstein College of Medicine, Bronx, N.Y., 10467

ABTRACT

Injection of increasing quantities of L-triiodothyronine (T_3) resulted in a progressive decrease in the proportion of T_3 bound to the nuclear fraction of rat liver and kidney cells. A similar dose-response relationship could not be demonstrated for other ultracentrifugal fractions. Only a modest reduction in nuclear binding of thyroxine was observed after injection of large amounts of this iodothyronine. The results indicate the presence of relatively specific binding sites for T_3 in the nuclei of rat liver and kidney.

Although previous studies have suggested that both L-thyroxine (T_4) L-triiodothyronine (T_3) are bound to a variety of subcellular constituents, the stereospecificity of these interactions has not been evaluated (1-4). In this communication, we shall present the first evidence that nuclei from rat liver and kidney possess a set of receptor sites which exhibit at least relative specificity for T_3 . In contrast, other subcellular fractions separated by ultracentrifugation did not exhibit similar stereochemical specificity.

MATERIALS AND METHODS

Groups of male Sprague-Dawley rats (Carworth Farms) were injected through the tail vein with 125_{I} labeled T3 or T4 (Abbott Laboratories) (40 $\mu c/\mu g$) together with increasing quantities of nonradioactive T3 or T4. Animals were killed 30 minutes and three hours after injection by exsanguination. Subcellular fractionation was carried out as previously described (3) except that a purified nuclear fraction was prepared by an additional centrifugation of the 700 X g fraction through 2.4M sucrose (5). The purity of the nuclear fraction was checked both by phase and electron microscopy. Plasma proteins were precipitated with 20% trichloroacetic acid in order to remove iodide. Descending chromatography of ethanolic

ISubmitted: April 11, 1972

extracts of nuclei was carried out in t-amyl alcohol:2N ammonia:hexane.

RESULTS

Figure 1 illustrates one of three representative experiments in which animals were killed 3 hours after the injection of varying doses of nonradioactive T₃ and T₄ together with the corresponding iodothyronine labeled with ^{125}I . As the dose of triiodothyronine

Fig.1. 5 rats for each point in 2 experiments, one with T₄, one with T₃. Mean \pm SEM. Activity ratio=(cpm/g liver)/(cpm/ml TCA ppt serum). was increased from 130 ng/100 g body weight, the percent of hepatic radioactivity associated with the purified nuclear fraction was reduced from 9.3 to 3.0 (Figure 1A). Over 98% of nuclear radioactivity could be extracted with ethanol and was demonstrated to migrate in the T₃ area of paper chro-matograms. These findings suggest that loading doses of T₃ displace labeled T₃ from a set of stereospecific T, binding sites located in the hepatic nucleus. The apparent constancy of the liver:plasma T, ratio (Figure 1B) over the entire dose range of injected T₃ suggests that most of the hepatocellular T₃ binding sites do not exhibit similar stereospecificity. Previous studies have shown that in a rat secular equilibrium between plasma and liver iodothyronine is established within 15 minutes after intravenous injection of labeled hormone (6). Moreover, the overall binding of T₃ by plasma proteins, as determined by equilibrium dialysis, is not altered by the concentration of T, achieved in the present set of experiments. Conventional subcellular fractionation (Table 1) indicates that the reduction in the percentage of T₂ associated with the nuclear fraction is accompanied by a proportional increase in the percentage of ${\rm T}_{\rm 3}$ associated with other subcellular fractions.

Table 1. Subo	<u>ellular T</u> 3	
	% hepatic	radioactivity
ng/100 g bw	70	10,000
Nuclei	7.1	0.84
Mitochondria	11.6	14.3
Microsomes	17.7	19.4
Supernatant	25.9	28.4
700 X g-nucles	L 22.6	23.0
% recovered	83	87

Mean of 5 animals indicated

Analogous studies in animals injected with T_4 (Figure 1A and B) indicate that a smaller percentage of hepatic iodothyronine is bound to the purified nuclear fraction and that

a much smaller relative proportion of nuclear radioactivity is displaced by increasing doses of injected T₁. 1.4% was in the nuclear fraction when 150 ng $T_{\lambda}/100$ g body weight was injected; 1.1% when the dose of T₄ was increased to 11,900 ng/100 g body weight. The actual molar quantities of injected iodothyronine reaching the hepatic cell was similar in the experiments with T₂ and T_{Λ} (range after injection of T_3 : 4.0-150 picomoles/gram; T₄ range: 4.4-430 picomoles/gram). Chromatography of extracts of nuclear radioactivity at the lowest dose of injected T, indicated that 85% of the radioactivity was in the form of T_4 , and the 14% was in the form of T_3 . T_3 radioactivity probably resulted from the selective accumulation by the nucleus of the 1-2% radioactive T2 present in all commercial preparations of radioactive T and to the small quantities of T_3 which were generated from T_4 during the pre-vious 3 hours. The liver:plasma T_4 ratio did not change with increasing doses of T₄.

The results of these experiments suggest, therefore, that the nuclear binding sites exhibit at least a relative specificity for T_3 . The modest reduction in T_4 -binding by the nucleus could have resulted from either minimal crossreactivity of the nuclear sites for T_A or displacement of $I-T_3$ by nonradioactive T₂. Both radioactive and nonradioactive doses of T_4 are minimally (1-2%) contaminated with T_3 . Entirely comparable results were demonstrated in six additional experiments in which the animals were killed within 30 minutes after the injection of graded doses of $\rm T_4$ and $\rm T_3^{-}$ During this period less than 6% of T_3 and less than 3% of T_4 are metabolized. Tracer T_{γ} added to liver homogenates 30 minutes after the injection of loading doses of T₂ did not distribute as the injected T₂ (Table 2). Moreover, a much larger proportion of injected T2 was associated with the nuclear fraction.

Table 3 illustrates the results of experiments in which the radioactivity of kidney nuclei was examined

Volume 35

after the injection of labeled T_4 and T_3 together with increasing nonradioactive doses of the corresponding iodothyronines. The results were entirely comparable to those observed in the liver experiments.

<u>Table 2</u>. Nuclear binding of iodothyronine administered <u>in vivo</u> or added in vitro.

Dose injected	% hepatic radio
(ng/100 g bw)	activity with nuclei

		<u>in vivo</u>	<u>in vitro</u>
^т з	130	8.22	0.90
	10,000	1.32	0.68
^T 4	150	1.44	1.10
	11,900	1.28	0.84

¹²⁵ I-T₃ and ¹²⁵ I-T₄ were injected with corresponding carrier iodothyronine. Rats (n=3) were killed 3 hrs. later and the corresponding ¹³¹Ilabelled tracer was added to the homogenate.

DISCUSSION

The results of these studies strongly suggest the existence of a set of easily saturatable T_3 binding sites in nuclei harvested from rat liver and kidney. Calcula-

tions based on the average concentration of T₃ in rat plasma (0.8 ng/ml) and the specific activity of injected T₃ indicate that only modest increments in the plasma T₃ (0.3 ng/ml) are accompanied by a significant displacement of the nuclear T_3 . On the other hand, the extranuclear binding sites appear not to be easily saturable since the liver:plasma concentration ratio is essentially unaltered over a wide range of injected T₃. Only 8-9% of "tracer" quantities of liver T3 are bound to the nuclei. Hence, even total saturation of these sites would results only in a 8 to 9% reduction in the total liver:plasma T. ratio, a reduction which would be difficult to detect experimentally. In contrast, the nuclear binding for T₄ is less avid, and only a small fraction of labeled T₄ is displaced from the nuclei as the injected dose of nonradioactive T₄ is increased for T₃.

In previous studies we have shown that distribution of labeled T_4 among subcellular components is the same, whether the iodothyronine is injected intravenously or is added directly to the homogenate (3). The results of the present experiments show that this is not the case for T_3 since major differences were demonstrable depending upon whether the tracer was administered in vivo or added in vitro. Moreover, in vitro addition of tracer, at least under the conditions used in these experiments, did not allow us to demonstrate the limited T_3 nuclear

Tab:	<u>le 3</u> .	Nuclear Binding of	T ₃ and T ₄ in kidney.	
	<u>n</u>	Dose/100 g bw (picomoles)	kidney/plasma iodothyronine ratio	% kidney radio- activity in nucleus
T,	12	177	12.1 + 1.28	2.56 ± .56
3	8	400	12.7 ± 1.26	1.17 ± .31
	12	1,442	10.8 ± 1.68	0.42 ± .08
Т,	4	240	•50	•34
4	4	460	• 47	• 30
	4	1,470	• 50	.24

Animals were killed 30 minutes after injection of tracer and carrier doses of iodothyronine. Mean \pm SEM indicated in T₃ experiments. Results of T₄ studies indicated are the mean of 2 sets of kidney homogenates, each consisting of two animals.

binding sites. Further studies are required to elucidate the underlying reasons for these differences.

Tata & associates (7) have suggested that a very early step in the action of the thyroid hormones is enhanced nuclear activity. Both the incorporation of orotic acid into nuclear RNA and the activity of DNA-dependent RNA polymerase are stimulated. The results of the current experiments are compatible with the concept that a direct interaction of T₃ or perhaps a T₃-cytosol complex with nuclear sites may initiate these early biological effects. Specific nuclear binding sites for number of steroid hormones have been identified (8,9). The apparent specificity of these iodothyronine binding sites for T₃ is also of interest in view of accumulr ing evidence that T_A must be converted to T₃ before it becomes "metabolically active" (10,11).

REFERENCES

 Tata, J.R., L. Ernster, and
E.M. Suranyi. Biochem. Biophys.
Acta 60:461, 1962.
Henninger, R.W., F.C. Larson, and E.C. Albright. Endocrinology 78:61, 1966.
Schwartz, H.L., G. Bernstein, and J.H. Oppenheimer. Endocrinology

<u>84</u>:270, 1969.

4. Oppenheimer, J.H., H.L. Schwartz, H.C. Shapiro, G. Bernstein, and M.I. Surks. J. Clin. Invest. 49:1016, 1970. 5. Widnell, C.C., and J.R. Tata. Biochem J. 98:621, 1966. 6. Oppenheimer, J.H., M.I. Surks, and H.L. Schwartz. Recent Progress in Hormone Research 25:381, 1969. 7. Tata, J.R., and C.C. Widnell. Biochem J. 98:604, 1966. 8. Jensen, E.V. and H.I. Jacobsen. Recent Progress in Hormone Research 18:387, 1962. 9. O'Malley, B., W.L. McGuire, P.O. Kohler, and S.G. Korenman. Recent Progress in Hormone Research 25:105, 1968. 10. Braverman, L.E., S.H. Ingbar, and K. Sterling. J. Clin. Invest. 49:855, 1970. 11. Schwartz, H.L., M.I. Surks, and J.H. Oppenheimer. J. Clin. Invest. 50:1124, 1971.

ACKNOWLEDGEMENTS

Supported by NIH (AM15421-12), Dept. Army Contract DA-49-193-MD-2967 and Contract I-222 (Career Investigatorship to JHO) from the Health Research Council of N.Y.C. We thank Mr. Jose Guerra and Mr. Francisco Martinez for expert technical assistance and Miss Maria Morel for secretarial support.