Medullary Thyroid Carcinoma: New Therapies and Trials

Matthew D. Ringel, MD

Ralph W. Kurtz Chair and Professor of Medicine
Director, Division of Endocrinology, Diabetes, and Metabolism
The Ohio State University College of Medicine
Director Thyroid Cancer Unit
Arthur G. James Cancer Center
Disclosures

• No Disclosures
• Funding from NIH
Medullary Thyroid Carcinoma: Demographics

- Hundahl, et. al., studied ~53,856 patients with thyroid cancer in the US from the National Cancer Data Base:
- MTC accounted for 3.6% of all thyroid cancer cases. Similar frequency in males and females.
- Survival was predicted by tumor stage and patient age at diagnosis.
- Options for treating metastatic disease are not curative.
Medullary Thyroid Carcinoma: Prognosis & TNM Stage

<table>
<thead>
<tr>
<th>Stage at Presentation</th>
<th>Cause-Specific Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

Medullary Thyroid Carcinoma: Distant Metastases

• Key Issues in Patients with Metastatic MTC
 – Who should be treated in the absence of symptoms?
 – Can we predict who will have aggressive disease before it “takes off?”
 – Are there effective systemic or local therapies?
Medullary Thyroid Carcinoma: Calcitonin and CEA Doubling Time

- Calcitonin and CEA Doubling Time
 - Barbet, et al evaluated 65 patients retrospectively (2.9-25 yrs of follow-up)
 - Calcitonin and CEA doubling times (DT) were calculated and stratified
 - >2 yrs
 - 0.5-2 yrs
 - <0.5 yrs
 - The prediction of death from MTC was compared to TNM and EORTC Staging.

Medullary Thyroid Carcinoma: Calcitonin Doubling Time

<table>
<thead>
<tr>
<th>Calcitonin DT (all time points)</th>
<th>5-yr survival</th>
<th>10-yr survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>>2 yrs</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.5-2.0 yrs</td>
<td>94%</td>
<td>64%</td>
</tr>
<tr>
<td><0.5 yrs</td>
<td>23%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Calcitonin and CEA Doubling Time MetaAnalysis

 – 10 studies that have post-op calcitonin
 – Enough samples for doubling time
 – Includes survival as an endpoint

• Evaluated multiple cut point of doubling times. Many were significant but 12 months seemed to be the greatest discriminator for survival for both calcitonin and CEA
CEA Doubling Time as a Marker of Lack of Response to Therapy

 - Retrospective Study of 28 patients with metastases treated with cytotoxic chemotherapy from 2001-2010 from one institution
 - Changes in calcitonin levels over the first three months did not statistically correlate with PFS
 - CEA levels did correlate with PFS and a rise in CEA was highly associated with shorter Progression free survival.
Does FDG Uptake Predict Aggressive Disease in MTC?

• Verbeek, et al. (J Nucl Med 2012;53:1863-1871) compared FDG PET and DOPA PET with calcitonin and CEA doubling times in 47 patients with residual calcitonin levels.

• DOPA PET was slightly more sensitive than FDG PET (44% vs 34%)

• However, only FDG PET correlated with calcitonin doubling time <12 months and higher calcitonin levels
Medullary Thyroid Carcinoma: Multikinase Inhibitors

• Multi-Kinase Inhibitors
 – Compounds that inhibit receptor tyrosine kinase signaling
 – Some inhibit RET signaling in addition to other receptors such as VEGFR, EGFR, PDFGR and others

• Two FDA-approved for metastatic progressive or symptomatic MTC
 • Vandetinib: RET/VEGFR/EGFR
 • Cabozantinib: RET/VEGFR/MET
Vandetanib Phase III Study

• Phase 3 study (Wells SA, J Clin Oncol. 2012;30:134-41
 – 331 patients from 23 centers (12/06-11/07)
 – 2:1 vandetanib:placebo randomization with open
 label extension; 24 month follow up
 – 231 pts received Vandetanib; 100 received Place

• Patients with metastatic MTC with RECIST
 measurable disease. Progression was not
 required. Calcitonin >500 pg/ml

• Duration of Progression Free Survival was
 primary Endpoint
Vandetanib Phase III Study: Toxicity and Tolerability

• 52 % (120/231) discontinued treatment
 – 17% either died or voluntarily withdrew
 – Diarrhea: 56% vs 26%
 – Rash: 45% vs 11%
 – Hypertension: 32% vs 5%
 – Fatigue: 24% vs 23%
 – Acneiform Rash: 15% vs 2%
 – QTc Prolongation: 14% vs 1%
Vandetanib and Body Composition

- Massicotte, et al (J Clin Endocrinol Metab; 2103:2401-08)
 - 33 patients retrospective review: 23 with vandetanib; 10 placebo from Phase III study
 - Compared with placebo group
 - Vandetanib had increased Body Weight (p=0.02); skeletal muscle mass (p=0.009) and Adiposity (p=0.004)
 - Patients with dose limiting toxicity had higher serum concentration of the compound and had less skeletal muscle mass
Vandetanib and Rash

• Rosen AC, et al (J Clin Endocrinol Metab 2012 1125-1133) retrospectively reviewed the literature between 2006 and 2011 for data regarding rash and Vandetanib (1751 treated vs 1210 controls)
 – All Grades: 46.1% (54.3 % in MTC)
 – High Grade: 3.5% (3.4% in MTC)
• Presumed due to EGFR effects
Cabozantinib Phase III study

- Phase 3 study (Ellisei, et al, J Clin Oncol. 2013;31:3639)
 - 330 patients from 23 countries
 - 2:1 cabozantinib:placebo randomization with no crossover; 219 vs 111 in each group

- Progression by RECIST was required over 14 months prior to enrollment

- Primary Endpoint was Progression Free Survival; Overall Response Rate and Overall Survival were Secondary Endpoints

- Dose holds and two dose level reductions allowed
Cabozantinib Phase III Study: Toxicity and Tolerability

- 219 Patients on Treatment Arm
 - 45% Continued Treatment
 - 55% Discontinued Treatment
 - Progressive Disease: 26%
 - Adverse Events: 16%
 - Death: 5%
- Diarrhea 63% vs 33%; Hand-Foot Syndrome: 50%
- Weight Loss: 48%
- Hypertension: 33% and Hemorrhage 25%
- No QTc prolongation
Comparison of Vandetanib and Cabozantinib

• **Efficacy:**
 – Study Entrance Requirements Differed
 – Duration of Responses
 – Vandetanib: 30.5 months vs 19 months (placebo)
 – Cabozantinib: 11.2 months vs 4 months

• **Side Effects**
 – Vandetanib: QTc, Hypertension, Acneiform Rash, Diarrhea, Headache: Requires REMS Training
 – Cabozantinib: Diarrhea, Weight Loss, Nausea, Hand-Foot Syndrome
Phase II Studies in MTC

• Not FDA-approved for MTC
 – **Sunitinib**: 2 studies including 30 patients
 • PR: 35-50%; SD: 57% (1,2)
 – **Sorafenib**: 16 patients:
 • PR: 6.3%; SD: 87.5% (3)
 – **Axitinib**: 27 patients
 • PR: 18%; SD: 27% (4)

MTC Clinical Trials: An International Effort (10/19/13)

• Current or Soon to Start Studies
 – **USA:** Pasireotide/Everolimus; CEA Antibody; Cabozantinib (2 doses); Vandetinib (children/adolescents; Ponatinib
 – **Europe:** Pasireotide/Everolimus; iTEP: anti-CEA/HSG with imaging; Nintedanib
 – **Asia:** Anlotinib
What Patients Should Be Considered for a Kinase Inhibitor

- Patients with **Progressive Distant Metastases** based on Anatomic Imaging Criteria (CT or MRI---RECIST) in whom you are concerned about mortality from MTC
- Patients without contraindications such as cardiac arrhythmias
- Patients in whom non-durable partial responses are expected to increase life expectancy.

PRESENTATION FROM THE 83rd ANNUAL MEETING OF THE AMERICAN THYROID ASSOCIATION, OCTOBER 16-20, 2013 (Matthew Ringel)
What Patients Should Not Be Placed on a Kinase Inhibitor

• Patients with stable metastatic MTC on anatomic imaging, particularly if the calcitonin or CEA doubling time are slow
• Patients with multiple co-morbidities
• Individuals with contraindications for treatment such as cardiac disease, arrhythmias, or uncontrolled hypertension
Summary

- Patients with Progressive, Metastatic MTC have systemic therapeutic options that:
 - Prolong Progression Free Survival and can stabilize progressive disease.
 - Induce Partial response in a minority of patients.
 - Are Associated with Side effects.
 - Require further studies to clarify best dosing strategies and predictors of response for long-term therapy are ongoing.

- Preclinical studies for New Treatments for Treatment Refractory disease are ongoing.